首页> 外文OA文献 >Schur Complement based domain decomposition preconditioners with Low-rank corrections
【2h】

Schur Complement based domain decomposition preconditioners with Low-rank corrections

机译:基于schur补的域分解预处理器   低等级修正

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper introduces a robust preconditioner for general sparse symmetricmatrices, that is based on low-rank approximations of the Schur complement in aDomain Decomposition (DD) framework. In this "Schur Low Rank" (SLR)preconditioning approach, the coefficient matrix is first decoupled by DD, andthen a low-rank correction is exploited to compute an approximate inverse ofthe Schur complement associated with the interface points. The method avoidsexplicit formation of the Schur complement matrix. We show the feasibility ofthis strategy for a model problem, and conduct a detailed spectral analysis forthe relationship between the low-rank correction and the quality of thepreconditioning. Numerical experiments on general matrices illustrate therobustness and efficiency of the proposed approach.
机译:本文介绍了一种针对通用稀疏对称矩阵的鲁棒预处理器,该预处理器基于域分解(DD)框架中Schur补码的低秩近似。在这种“ Schur低秩”(SLR)预处理方法中,系数矩阵首先通过DD解耦,然后利用低秩校正来计算与接口点关联的Schur补码的近似逆。该方法避免了Schur补体矩阵的明确形成。我们展示了该方法对模型问题的可行性,并对低秩校正与预处理质量之间的关系进行了详细的频谱分析。在一般矩阵上的数值实验说明了该方法的鲁棒性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号